Note

The existence of a simple 3-(28, 5, 30) design

Yeow Meng Chee

Planning and Infrastructure Department, National Computer Board, 71 Science Park Drive, S0511, Singapore

Received 15 June 1990

A t- (v, k, λ) design is a pair (X, \mathcal{B}) , where \mathcal{B} is a collection of subsets of size k (called *blocks*) from a set X of cardinality v such that every t-element subset of X is contained in exactly λ blocks of \mathcal{B} . If the blocks in \mathcal{B} are not repeated, the design is said to be simple. It is easy to show that the minimum value of λ for which a 3-(28, 5, λ) design can possibly exist is 30.

The existence of a 3-(28, 5, 30) design is known; Hanani, Hartman and Kramer constructed a 3-(28, 5, 30) design in [2]. However, their construction produces a

Correspondence to: Yeow Meng Chee, Planning and Infrastructure Department, National Computer Board, 71 Science Park Drive, S0511, Singapore.

0012-365X/93/\$06.00 © 1993--Elsevier Science Publishers B.V. All rights reserved

design with repeated blocks. The existence problem for simple 3-(28, 5, 30) designs is apparently not resolved (cf. [1]). In this note, we prove the existence of a simple 3-(28, 5, 30) design.

Let X be the set of $v = \binom{p}{2}$ labelled edges of the undirected complete graph K_p . A graphical t- (v, k, λ) design (X, \mathcal{B}) is one such that if $B \in \mathcal{B}$, then all subgraphs of K_p isomorphic to B are also in \mathcal{B} . In other words, (X, \mathcal{B}) has the symmetric group S_p as an automorphism group. We present a graphical 3-(28, 5, 30) design in Fig. 1.

Let X be the set of all 28 labelled edges of K_8 . Take as blocks in \mathscr{B} all the subgraphs of K_8 isomorphic to the six graphs shown in Fig. 1 (we omit isolated vertices for ease of presentation).

It is readily verified that (X, \mathcal{B}) is a 3-(28, 5, 30) design. Moreover, this design is simple.

References

- [1] Y.M. Chee, C.J. Colbourn and D.L. Kreher, Simple *t*-designs with $v \leq 30$, Ars Combin. 29 (1990) 193-258.
- [2] H. Hanani, A. Hartman and E.S. Kramer, On three-designs of small order, Discrete Math. 45 (1983) 75–97.