Note

The existence of a simple $3-(28,5,30)$ design

Yeow Meng Chee

Planning and Infrastructure Department, National Computer Board, 71 Science Park Drive, S051I, Singapore

Received 15 June 1990

A $t-(v, k, \lambda)$ design is a pair (X, \mathscr{B}), where \mathscr{B} is a collection of subsets of size k (called blocks) from a set X of cardinality v such that every t-element subset of X is contained in exactly λ blocks of \mathscr{B}. If the blocks in \mathscr{B} are not repeated, the design is said to be simple. It is easy to show that the minimum value of λ for which a $3-(28,5, \lambda)$ design can possibly exist is 30 .

The existence of a 3-(28,5,30) design is known; Hanani, Hartman and Kramer constructed a $3-(28,5,30)$ design in [2]. However, their construction produces a

Fig. 1.

[^0]design with repeated blocks. The existence problem for simple 3-(28,5,30) designs is apparently not resolved (cf. [1]). In this note, we prove the existence of a simple $3-(28,5,30)$ design.

Let X be the set of $v=\binom{p}{2}$ labelled edges of the undirected complete graph K_{p}. A graphical $t-(v, k, \lambda)$ design (X, \mathscr{B}) is one such that if $B \in \mathscr{B}$, then all subgraphs of K_{p} isomorphic to B are also in \mathscr{B}. In other words, (X, \mathscr{B}) has the symmetric group S_{p} as an automorphism group. We present a graphical 3-(28,5,30) design in Fig. 1.

Let X be the set of all 28 labelled edges of K_{8}. Take as blocks in \mathscr{B} all the subgraphs of K_{8} isomorphic to the six graphs shown in Fig. 1 (we omit isolated vertices for ease of presentation).

It is readily verified that (X, \mathscr{B}) is a $3-(28,5,30)$ design. Moreover, this design is simple.

References

[1] Y.M. Chee, C.J. Colbourn and D.L. Kreher, Simple t-designs with $v \leqslant 30$, Ars Combin. 29 (1990) 193-258.
[2] H. Hanani, A. Hartman and E.S. Kramer, On three-designs of small order, Discrete Math. 45 (1983) 75-97.

[^0]: Correspondence to: Yeow Meng Chee, Planning and Infrastructure Department, National Computer Board, 71 Science Park Drive, S0511, Singapore.

