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Abstract 

Chee, Y.M. and G.F. Royle, The 2rotational Steiner triple systems of order 25, Discrete 

Mathematics 97 (1991) 93-100. 

In this paper, we enumerate the 2-rotational Steiner triple systems of order 25. There are 

exactly 140 pairwise non-isomorphic such designs. All these designs have full automorphism 

groups of order 12. We also investigate the existence of subsystems and quadrilaterals in these 

designs. 

1. Introduction 

With the existence problem for STS(v)‘s (all terms are defined in Section 2) 
completely settled (see, e.g., [l]), many researchers have devoted themselves to 
enumerating such designs. The number of pairwise non-isomorphic STS(v)‘s, 
denoted by N(v), has been determined exactly for all u c 15; we have 
N(3) = N(7) = N(9) = 1, N(13) = 2, and N(15) = 80 (cf. [ll]). At this point, we 
encounter a combinatorial explosion effect. It has been shown that N(19) 2 
2395687 [15], N(21) 22160980, N(25) 2 1014, and N(27) 2 10” (cf. [6]). These 
numbers are probably too large to ever be computed exactly. Therefore, as 
STS(v)‘s are so numerous, extra conditions are often imposed in order to 
enumerate interesting classes of STS(u)‘s. Typically, such conditions involve 
specifying automorphisms or subsystems that the desired designs must possess. 
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Table 1 

Number of pairwise 
V non-isomorphic 2-rotational STS(u)‘s Reference 

7 1 [I41 
1 [I41 
3 Ill, 

19 10 
25 140 paper 
27 1468 this 

The class of STS(25)‘s possessing an automorphism of order 25, i.e. cyclic 

STS(25)‘s, has been enumerated by Bays (cf. Colbourn and Mathon [5]). There 

are exactly 12 pairwise non-isomorphic such designs. In this paper, we enumerate 

the class of 2-rotational STS(25)‘s and investigate the existence of subsystems and 

quadrilaterals in these designs. The existence problem for 2-rotational STS(v)‘s 

has been settled by Phelps and Rosa [14] who. proved that the condition 

u = 1, 3, 7, 9, 15 or 19 (mod 24) is both necessary and sufficient for a 2-rotational 

STS(V) to exist. In particular, they also determined that the number of pairwise 

non-isomorphic 2-rotational STS(19)‘s is 10. In view of the results in this paper, 

together with that of Phelps and Rosa, and previous results on N(u), the 

enumeration problem for 2-rotational STS(v)‘s is now complete for all u < 25. 

Table 1 gives the current state of knowledge on the number of pairwise 

non-isomorphic 2-rotational STS(v)‘s for v G 27. 

2. Definitions and notations 

A Steiner triple system is a pair (X, a), where X is a finite set of elements 

called points, and ?8 is a collection of three-subsets of X called triples, such that 

every two-subset of X is contained in exactly one triple. A Steiner triple system 

having v points is denoted by STS(v). The number v is called the order of the 

STS(v). 

An STS(w), say (Y, a), is a subsystem of an STS(v), say (X, a), provided 

Y s X and L8 E d. It is easy to see that an STS(w) exists as a subsystem of an 

STS(v) only if 2w + 1 G v. Trivially, any triple of an STS(v) forms a subsystem of 

order three. We are interested only in nontrivial subsystems, i.e. subsystems of 

order at least seven. An STS(v) with no nontrivial subsystems is commonly called 

simple or planar. 
A quadrilateral in an STS(v) is a subset of four triples whose union contains 

precisely six points. A quadrilateral must have the following configuration: 

{a, 6, c], {a, d, e>, 1.L 6, d], and {f, c, e}. STS(v)‘s containing no quadrilaterals 

are said to be quadrilateral-free. We denote a quadrilateral-free STS(v) by 

QFSTS(v). 
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Two STS(v)‘s, say (X,, P&) and (X2, P&J, are said to be isomorphic if there 

exists a bijection ;n:x,+x, such that {x, y, z} E BA, implies 

{n(x), NY), n(z)) E %, Such a bijection is called an isomorphism. An 
automorphism of an STS(V), say (X, a), is an isomorphism from (X, 9) onto 
itself. The set of all automorphisms forms a group, called the full automorphism 

group, under functional composition. Any subgroup of the full automorphism 
group is simply called an automorphism group. 

An STS(V) is called k-rotational if it admits a permutation with one fixed point 
and (V - 1)/k cycles of length k as an automorphism. 

The block intersection graph of an STS(V) is a graph H such that the vertices of 
H are the triples of the STS(V), and two vertices are adjacent if and only if the 
corresponding triples intersect. It is easy to see that non-isomorphic STS(v)‘s 
have non-isomorphic block intersection graphs for 212 19 (and it is still true, 
though less easy to show, for all v). 

3. Constructing designs with a given group 

Let G be a group acting on a set X. Then there is a natural action of G on the 
two-subsets and three-subsets of X. Let A(G) be a matrix with rows and columns 
indexed by G-orbits of two-subsets and three-subsets of X respectively, such that 
the (i, j)th entry of A(G), aij, is the number of three-subsets in the G-orbit 
indexing column i containing a fixed two-subset in the G-orbit indexing row i. A 
result of Kramer and Mesner [9] shows that an STS(V) exists with G as an 
automorphism group if and only if there is a (0, 1)-vector u satisfying the matrix 
equation A(G)u =j, where j is the vector of all 1’s. The vector u determines 
which orbits of triples are to be present in the STS(V) in a natural way. 

Kreher and Radziszowski [lo] proposed several efficient heuristics for comput- 
ing (0, 1)-vectors u that satisfy A(G)u =j. They observed that if u is any integer 
vector satisfying A(G)u =j, then (;) is a vector in the lattice 22 spanned by the 
columns of the matrix 

B= 
I 0 

A(G) > -j ’ 

i.e. 3’ is the set of all integer linear combinations of the columns of B. They also 
made the observation that a (0, 1)-vector u satisfying A(G)u =j is often a short 
vector in 2. A modified basis reduction algorithm is then used to obtain a 
reduced basis B’ for a new lattice 3’ that contains all the integer vectors u 
satisfying A(G)u =j. In addition, the reduced basis B’ contains relatively short 
vectors of 3’ and often a (0, 1)-vector u satisfying A(G)u =j. These heuristics of 
Kreher and Radziszowski have been used with much success in the construction 
of designs with specified automorphism groups [2]. 
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4. Admissible configurations 

Let G = ((Y), where a = (0)(12. . . 12)(13 14. . . 24). It follows from the 
discussion in the previous section that if we want to construct a 2-rotational 
STS(25) on the set of points X = (0, 1, . . . ,24}, we need only look for a 
(0, 1)-solution to A(G)u =j. We can compute the number of orbits of G on 
two-subsets and three-subsets of X, denoted p2(G) and p,(G) respectively, from 
Burnside’s lemma. 

Lemma 1 (Burnside). The number of orbits of G on t-subsets of X is 

where fix(n) is the set of t-subsets of Xfixed by z 

This gives p,(G) = 26 and p,(G) = 194. Table 2 provides a detailed break-down 
for the 194 orbits of three-subsets of X. 

A careful examination of the 26 by 194 matrix A(G) that arises reveals that 38 
of the 194 columns contain some entry aii > 1. Hence, none of these 38 
corresponding orbits of three-subsets can be part of a 2-rotational STS(2.5). These 
38 orbits all have length 12. Let A(G) be the matrix A(G) with these 38 columns 
deleted, then a 2-rotational STS(25) exists if and only if there is a (0, 1)-vector u 
satisfying A(G)u =j. 

Let ni be the number of orbits of three-subsets of X of length i that are present 
in a 2-rotational STS(25). We have the following integer linear program: 

4n, + 6n, + 12q2 = 100, 

06n4d2, 0~n,~2, Osn,,c156. 

The only feasible solutions to the above integer linear program are 

n4= 1, n,=O, n12= 8 and n4=1, n6=2, nlz=7. 

A 2-rotational STS(25) with the structure n4= 1, n6= 0, and n12 = 8 will be 
referred to as Type I; a 2-rotational STS(25) with the structure n4 = 1, n6 = 2, and 
n 12 = 7 will be referred to as Type II. 

Table 2 

G-orbits of three-subsets of X 

Length of G-orbit Number of G-orbits 

4 2 

6 2 

12 190 

194 
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We used the algorithm of Kreher and Radziszowski to obtain a reduced basis B 
for the lattice 2 that contains all the integer vectors u satisfying A(G)u =j. We 
observed that for all the vectors b E B, llbll 2 is even. Thus, if b ’ is any vector in 
JZ, then ((b’112 is also even. Therefore, as the existence of a Type I 2-rotational 
STS(25) implies that there is a (0, 1)-vector u satisfying A(G)u =j with the 
property that ]lull* = 9, we have the following result. 

Lemma 2. All 2-rotational STS(25)‘s are of Type II. 

5. Computational details 

Without loss of generality, we may assume that in a 2-rotational STS(25), the 
starter triples {1,5,9}, (0, 1,7}, and {0,13,19} are the orbit representatives of 
the one orbit of length four and the two orbits of length six, respectively. This 
leaves us with the task of selecting seven orbit representatives for the orbits of 
length 12 to complete the STS(25). 

To restrict the search further, we observe that the two-subset {1,2} is not 
contained in any triples of the partial STS(25) that arises from the three starter 
triples given above. Thus, we may assume that one of the seven orbit 
representatives for G-orbits of length 12 have the form { 1,2, *}. It is easy to 
verify that without loss of generality, the only candidates for * are * = 4 or 13. 
The remaining six orbit representatives in each case are then completed by a 
backtracking algorithm using depth-first search. At this stage, it is possible to 
reduce the search still further. However, working on the combined principles that 
it is better to let the machine do the work, and that more complex programs are 
more likely to contains mistakes, we decided to leave in this amount of 
redundancy. We also executed two computer programs that were written 
independently for the enumeration to be certain that no mistakes have crept in. 
In each case, the final results agreed with the other. 

Isomorphism testing of the designs was done by using nauty, the isomorphism 
testing algorithm of McKay [12,13], on the block intersection graphs. Graphs 
arising from designs are notoriously difficult for isomorphism checking, and it was 
necessary to first use a fairly sophisticated routine to partition the vertices before 
using nauty. The result is that there are exactly 140 pairwise non-isomorphic 
2-rotational STS(25)‘s. The isomorphism testing also yielded the result that all 
140 designs have full automorphism groups of order 12. 

6. Subsystems of order 7 and 9 

The only orders for which a nontrivial subsystem can exist in an STS(25) are 
seven and nine. A direct backtracking algorithm is applied to the 140 2-rotational 
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STS(25)‘s in a search for designs containing subsystems of order seven. The result 
is astonishing; none of the designs contains a subsystem of order seven. This, 
however, renders the search for subsystems of order 9 more efficient. 

It was proven by Colbourn, Colbourn and Stinson [4] that the existence of 
subsystems in STS(v)‘s can be decided in polynomial time. Their algorithm is 
based on the observation that a subsystem has the property that every triple 
intersects the subsystem in 0, 1, or 3 points. Therefore, given a subset Y of 
points, we can close Y by repeatedly introducing all points from triples that 
intersect Y in more than one point. Therefore, taking any three points that is not 
a triple, and closing it, yields either a proper nontrivial subsystem or the design 
itself. Consequently, this algorithm when applied to the 2-rotational STS(25)‘s, 
either finds a subsystem of order nine or else proves that no nontrivial subsystems 
exist. 

Of all the 140 2-rotational STS(25)‘s tested with this algorithm, only four 
contain subsystems of order nine. The other 136 designs are planar. 

7. Quadrilateral-free systems 

The existence of QFSTS(v)‘s have been previously investigated. Doyen [7] 
proved that if 21s 3 (mod 6), and 7 does not divide u, then there exists a 
QFSTS(u). It was also shown by Grannell, Griggs, and Phelan (81 that there 
exists a QFSTS(u) whenever the order of -2 (modp) is congruent to 2 (mod 4) 
for every prime divisor p of u - 2. A QFSTS(25) can be constructed by this 

Table 3 

2-rotational STS(25)‘s 

Number of quadrilaterals Number of designs 

0 4 
4 16 

12 16 
16 29 
24 17 

28 17 

36 15 
40 11 
48 6 
52 5 
60 1 
64 2 
72 1 

140 
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Table 4 

2-Rotational STS(25)‘s containing subsystems of order 9 

Common starter triples: {I, 5,9}, (0, 1,7}, {0,13,19}, {l, 2,13} 
Design # Starter triples 

123 {1,3,18) {l, 4,141 {1,6,15) {1,17,20) 
124 {1,3,18) {1,4,14) (1,6,15> {l, 17,20) 
133 {1,3,18} {1,4,17) {1,6,151 {1,19,21) 
134 {1,3,18) {l, 4,17} {1,6,15> {1,19,21) 

{1,19,21) {13,14,18} 

{Ll9,21) { 13,14,21} 

{1,20,23) {13,14, IS} 

{ 1,207 23) { 13,14,21} 

method and is the only QFSTS(25) previously known. Other constructions of 
QFSTS(n)‘s were recently given by Stinson and Wei [16]. 

We carried out an enumeration of quadrilaterals in the 140 2-rotational 
STS(25)‘s and found exactly four quadrilateral-free designs among them. A 
summary of the results obtained are given in Table 3. 

8. Concluding remarks 

The starter triples for the four 2-rotational STS(25)‘s with subsystems of order 
nine are given in Table 4. 

A complete enumeration actually proves that each of the four designs given in 
Table 4 has exactly three distinct subsystems of order nine. 

The starter triples for the four quadrilateral-free 2-rotational STS(25)‘s are 
listed in Table 5. 

Using similar approaches as those given in this paper, we have been able to 
prove that there are at least 1468 pairwise non-isomorphic 2-rotational STS(27)‘s. 
This improves greatly the best previous known bound of Phelps and Rosa [14], 
who showed that there are exactly 35 pairwise non-isomorphic l-rotational 
STS(27)‘s (and thus at least 35 pairwise non-isomorphic 2-rotational STS(27)‘s). 

A complete catalogue for all the pairwise non-isomorphic 2-rotational 
STS(25)‘s that we have found is too long to be included here. However, 
interested readers can obtain a catalogue of these designs [3] from either one of 

Table 5 

Quadrilateral-free 2-rotational STS(25)‘s 

Common starter triples: {1,5,9), {0, 1,7}, {0,13,19}, {l, 2,13} 
Design # Starter triples 

84 (1,3,17) {1,4,19) {1,6,14} {l, 18.20) 
88 {l, 3,171 {1,4,19) (~6~23) {1,14,21) 

104 {1,3,17) {1,4,22) {l> 6,141 {l, 16,231 
132 {1,3,18) {1,4,171 {1,6,15) {1,19,20) 

{1.22,23} { 13,16,21} 

(1,20,22) { 13,14,22} 

(1,187 20) {13,14,22} 

{1,21,23) { 13,16,21} 
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the authors. The numbers used to denote the designs in Table 4 and Table 5 
correspond to those used in the catalogue. 
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