New Infinite Families of 2-Edge-Balanced Graphs

Cafer Caliskan ${ }^{1}$ and Yeow Meng Chee ${ }^{2}$
${ }^{1}$ Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul 34083, Turkey, E-mail: cafer.caliskan@khas.edu.tr
${ }^{2}$ Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, E-mail: ymchee@ntu.edu.sg

Received February 13, 2013; revised July 6, 2013

Published online 1 August 2013 in Wiley Online Library (wileyonlinelibrary.com).
DOI 10.1002/jcd. 21367

Abstract

A graph \boldsymbol{G} of order \boldsymbol{n} is called \boldsymbol{t}-edge-balanced if \boldsymbol{G} satisfies the property that there exists a positive λ for which every graph of order n and size t is contained in exactly λ distinct subgraphs of K_{n} isomorphic to G. We call λ the index of G. In this article, we obtain new infinite families of 2-edge-balanced graphs. © 2013 Wiley Periodicals, Inc. J. Combin. Designs 22: 291-305, 2014

Keywords: graphical t-designs; t-edge-balanced graphs

1. INTRODUCTION

Our terminology and notation are standard (see [3] for undefined terms). We consider the problem of seeking a graph G of order n satisfying the property that there exists a positive λ for which every graph of order n and size t is contained in exactly λ distinct subgraphs of K_{n} isomorphic to G. We call such a graph $G t$-edge-balanced, and call λ its index. This problem is a special case of the problem of constructing graphical t-designs (all terms and notations are defined in the next section). Not every graph of order n is t-edge-balanced. For example, the graph of order n containing a star of order k and $n-k$ isolated vertices is not 2-edge-balanced for any $k \geq 2$, since it contains no pair of independent edges, and the graph of order $n \equiv 0(\bmod 2)$ containing $n / 2$ independent edges is not 2 -edge-balanced since it contains no pair of incident edges. In fact, there has been only one explicit infinite family of 2-edge-balanced graphs known. Alltop [1]

[^0]has shown that when $n \geq 3$ is odd, the graph (of order n) containing a cycle of length $(n+3) / 2$ and $(n-3) / 2$ isolated vertices is 2-edge-balanced with index $\lambda=(n-3)!/$ $((n-3) / 2)!$.

For history and state-of-the-art results on t-edge-balanced graphs and graphical t-designs, we refer the reader to $[4,5]$.

The purpose of this paper is to provide an exposition of the method developed by Alltop [1] for finding 2-edge-balanced graphs and obtain new infinite families of 2-edge-balanced graphs. These also give rise to new infinite families of graphical 2-designs.

2. PRELIMINARIES

For a finite set X and a nonnegative integer t, the set of all t-subsets of X is denoted $\binom{X}{t}$. A set system is a pair (X, \mathcal{A}), where X is a finite set of elements called points, and $\mathcal{A} \subseteq 2^{X}$. Elements of \mathcal{A} are called blocks. The order of (X, \mathcal{A}) is the number of points, $|X|$. A set system (X, \mathcal{A}) such that $\mathcal{A} \subseteq\binom{X}{k}$ is said to be k-uniform. A t-design, or more specifically a $t-(v, k, \lambda)$ design, is a k-uniform set $\operatorname{system}(X, \mathcal{A})$ of order v such that every $T \in\binom{X}{t}$ is contained in precisely λ blocks of \mathcal{A}. To avoid triviality, we impose the following restrictions on a $t-(v, k, \lambda)$ design (X, \mathcal{A}) :
(i) $t \geq 2$,
(ii) $t<k<v$,
(iii) $\mathcal{A} \neq \varnothing$, and $\mathcal{A} \neq\binom{ X}{k}$.

For two set systems, $\mathcal{S}_{1}=\left(X_{1}, \mathcal{A}_{1}\right)$ and $\mathcal{S}_{2}=\left(X_{2}, \mathcal{A}_{2}\right)$, an isomorphism of \mathcal{S}_{1} onto \mathcal{S}_{2} is a bijection $\sigma: X_{1} \rightarrow X_{2}$ such that $\sigma\left(\mathcal{A}_{1}\right)=\mathcal{A}_{2}$. A set system \mathcal{S}_{1} is isomorphic to a set system \mathcal{S}_{2}, and written $\mathcal{S}_{1} \cong \mathcal{S}_{2}$, if there exists an isomorphism of \mathcal{S}_{1} onto \mathcal{S}_{2}. An automorphism of a set system is an isomorphism of the set system onto itself. The set of all automorphisms of a set system \mathcal{S} forms a group under functional composition. This group is called the automorphism group of \mathcal{S} and is denoted by $\operatorname{Aut}(\mathcal{S})$.

Let $V=V\left(K_{n}\right)$ be the set of vertices of the complete graph K_{n} on n vertices. The action of the symmetric group S_{n} on V also induces an action on $E=E\left(K_{n}\right)=\binom{V}{2}$, the set of edges of K_{n}. A $\left.t-\binom{n}{2}, k, \lambda\right)$ design (E, \mathcal{A}) is said to be graphical if it is fixed under the action of S_{n}, that is, $S_{n}(\mathcal{A})=\mathcal{A}$. In particular, \mathcal{A} is then a union of orbits of S_{n} on $\binom{E}{k}$. We can consider a subset $E^{\prime} \subseteq E$ as a labeled graph with edge set E^{\prime} and vertex set V. The orbits of S_{n} on 2^{E} are just the isomorphism classes of graphs on vertex set V, and therefore each such orbit can be represented by an unlabeled subgraph of K_{n}.

The connection between graphical t-designs and t-edge-balanced graphs is as follows: a graphical $\left.t-\binom{n}{2}, k, \lambda\right) \operatorname{design}(X, \mathcal{A})$ such that \mathcal{A} contains a single orbit represented by G is equivalent to G being a graph of order n and size k that is t-edge-balanced with index λ. This equivalence is clear from the definitions of graphical t-designs and t-edge-balanced graphs.

Chee and Kaski [4] remarked that only a finite number of graphical t-designs are known. It came to our attention recently that an infinite family of 2-edge-balanced graphs, and hence graphical 2-designs, had already been discovered by Alltop [1] in 1966 (actually, this fact is also mentioned by Betten et al. [2] referenced in [4], but we had missed it).

3. ALLTOP'S METHOD

The essence of Alltop's method is the following elementary result, for which a proof is included for completeness.

Lemma 3.1 (Alltop [1]). Let G and H be graphs of order n. Suppose G contains $n_{H: G}$ distinct subgraphs isomorphic to H. Then the number of distinct subgraphs of K_{n} isomorphic to G, each of which contains H, is

$$
\lambda_{H: G}=n_{H: G} \frac{|\operatorname{Aut}(H)|}{|\operatorname{Aut}(G)|} .
$$

Proof. We count in two ways, N, the number of ordered pairs (H^{\prime}, G^{\prime}) satisfying the conditions

- H^{\prime} is a subgraph of K_{n} isomorphic to H,
- G^{\prime} is a subgraph of K_{n} isomorphic to G, and
- G^{\prime} contains H^{\prime}.

For a fixed H^{\prime}, there are $\lambda_{H: G}$ subgraphs of K_{n} isomorphic to G, each of which contains H^{\prime}. Since the number of subgraphs of K_{n} isomorphic to H is $n!/|\operatorname{Aut}(H)|$, the total number of such ordered pairs $\left(H^{\prime}, G^{\prime}\right)$ is

$$
\begin{equation*}
\lambda_{H: G} \frac{n!}{|\operatorname{Aut}(H)|} . \tag{1}
\end{equation*}
$$

On the other hand, for a fixed G^{\prime}, G^{\prime} contains $n_{H: G}$ subgraphs isomorphic to H. Since the number of subgraphs of K_{n} isomorphic to G is $n!/|\operatorname{Aut}(G)|$, the total number of such ordered pairs $\left(H^{\prime}, G^{\prime}\right)$ is

$$
\begin{equation*}
n_{H: G} \frac{n!}{|\operatorname{Aut}(G)|} . \tag{2}
\end{equation*}
$$

Equating (1) and (2) gives the required

$$
\lambda_{H: G}=n_{H: G} \frac{|\operatorname{Aut}(H)|}{|\operatorname{Aut}(G)|}
$$

There are two isomorphism classes of graphs of order n and size two. These are shown in Fig. 1 (we adopt the convention that isolated vertices are not shown in graph drawings;

FIGURE 1. Isomorphism classes of graphs of size two.
the order of the graphs involved should be clear from the context), together with their automorphism groups. A necessary and sufficient condition for a graph G to be 2-edgebalanced is $\lambda_{H_{1}^{(2)}: G}=\lambda_{H_{2}^{(2)}: G}$. It follows from Lemma 3.1 that this condition is equivalent to

$$
n_{H_{1}^{(2)}: G}\left|\operatorname{Aut}\left(H_{1}^{(2)}\right)\right|=n_{H_{2}^{(2)}: G}\left|\operatorname{Aut}\left(H_{2}^{(2)}\right)\right|,
$$

or

$$
\frac{n_{H_{2}^{(2)}: G}}{n_{H_{1}^{(2)}: G}}=\frac{n-3}{4} .
$$

We record this result as:
Theorem 3.1 (Alltop [1]). A graph G of order n is 2-edge-balanced if and only if

$$
\frac{n_{H_{2}^{(2)}: G}}{n_{H_{1}^{(2)}: G}}=\frac{n-3}{4}
$$

Corollary 3.1 (Alltop [1]). Let $k \geq 3$ and let G be the graph of order $2 k-3$ and size k containing a cycle of length k. Then G is 2-edge-balanced of index $(2 k-6)!/(k-3)!$.

Proof. We have $n_{H_{1}^{(2)}: G}=k$ and $n_{H_{2}^{(2)}: G}=k(k-3) / 2$. This gives $n_{H_{2}^{(2): G}} / n_{H_{1}^{(2)}: G}=$ $(k-3) / 2=(2 k-6) / 4$. It follows that G is 2-edge-balanced. The index of G follows from $|\operatorname{Aut}(G)|=2 k(k-3)!$.

Corollary 3.2 (Alltop [1]). There exists a graphical 2-(($\left.\left(2_{2}^{2 k-3}\right), k,(2 k-6)!/(k-3)!\right)$ design, for all $k \geq 3$.

4. NEW INFINITE FAMILIES OF 2-EDGE-BALANCED GRAPHS

Let $S_{m, k}$ be a tree of size k and consisting of a vertex $v_{0}^{\left(S_{m, k}\right)}$ of degree $m \geq 1$ and other vertices of degree 1 or 2 . It is immediate that $k \geq m$. We label by $v_{1}^{\left(S_{m, k}\right)}, v_{2}^{\left(S_{m, k}\right)}, \ldots, v_{m}^{\left(S_{m, k}\right)}$ the leaves of $S_{m, k}$. If we denote by $d_{j}^{\left(S_{m, k}\right)}$ the distance of $v_{j}^{\left(S_{m, k}\right)}$ from the vertex $v_{0}^{\left(S_{m, k}\right)}$, note that $\sum d_{j}^{\left(S_{m, k}\right)}=k$, where $d_{j}^{\left(S_{m, k}\right)} \geq 1$. Based on the structure of the tree, we compute that $n_{H_{1}^{(2)}: S_{m, m}}=\binom{m}{2}$, and for a given $m, n_{H_{1}^{(2)}: S_{m, k}}=n_{H_{1}^{(2)}: S_{m, k-1}}+1$ whenever $k>m$. Therefore,

$$
n_{H_{1}^{(2)}: S_{m, k}}=k+\binom{m}{2}-m
$$

Moreover, $n_{H_{2}^{(2)}: S_{m, m}}=0$, and for a given $m, n_{H_{2}^{(2):}: S_{m, k}}=n_{H_{2}^{(2)}: S_{m, k-1}}+k-2$ whenever $k>m$, from which it follows that

$$
n_{H_{2}^{(2)}: S_{m, k}}=\binom{k-1}{2}-\binom{m-1}{2} .
$$

Let's define

$$
N(m, k)=4 \frac{n_{H_{2}^{(2)}: S_{k, m}}}{n_{H_{1}^{(2)}: S_{k, m}}}+3=4 \frac{\binom{k-1}{2}-\binom{m-1}{2}}{k+\binom{m}{2}-m}+3,
$$

where $m, k \in \mathbb{Z}^{+}$. If $N=N(m, k)$ for some m and k, then define $G_{m, k}$ to be the union of $S_{m, k}$ and $N-k-1$ isolated vertices whenever $N \in \mathbb{Z}$ is at least $k+1$. Then it follows that $G_{m, k}$ is of order N. If $k=m$, except when $k=m=2$, then $N<k+1$. Notice also that $G_{1, k} \cong G_{2, k}$. Thus, we assume that $k>m \geq 1$ throughout this article. Moreover, the size of the automorphism group of $G_{m, k}$ is computed as follows:

$$
\left|\operatorname{Aut}\left(G_{m, k}\right)\right|=(N-k-1)!\Pi_{d=1}^{k-m+1}\left(\left|\left\{j \mid j \in\{1, \ldots, m\}, d_{j}^{\left(G_{m, k}\right)}=d\right\}\right|\right)!
$$

Theorem 4.1. $\quad G_{m, k}$ is 2-edge-balanced of index $\lambda=\frac{4 k(k-1)(N-3)!}{(N+1)\left|A u t\left(G_{m, k}\right)\right|}$ if and only if $N \in \mathbb{Z}$ is at least $k+1$.

Proof. It is immediate by Theorem 3.1 and the index follows from the computation of the length of the orbit of $G_{m, k}$.

Let's now consider the values of $m, k \in \mathbb{Z}^{+}$such that $N \in \mathbb{Z}$ is at least $k+1$. Our computation shows that

$$
\begin{equation*}
N=\frac{4 k^{2}-6 k-A}{2 k+A}=2 k-A-3+\frac{A(2+A)}{2 k+A} \tag{3}
\end{equation*}
$$

where $A=m^{2}-3 m$. Thus, we are interested in the values of $m, k \in \mathbb{Z}^{+}$so that $N \geq k+$ 1 and $\frac{A(2+A)}{2 k+A} \in \mathbb{Z}$, since $2 k-A-3 \in \mathbb{Z}$. Notice also that $2 k+A \neq 0$, since $k>m \geq 1$. In particular, we let $A(2+A)=0$, then the nonzero integer solutions are $m=1,2,3$. This results in the following corollary.
Corollary 4.1. $\quad G_{m, k}$ is 2-edge-balanced for any $k>m$, where $m \in\{1,2,3\}$.
In what follows, we first let $m \in\{1,2,3\}$ and then analyze the case $m \geq 4$.

4.1. $m=1$ or $m=2$

Let G be one of the graphs $G_{1, k}$ or $G_{2, k}$. Since $N(1, k)=N(2, k)=2 k-1$, there are exactly $k-2$ isolated vertices in G, so we have the following corollary.
Corollary 4.2. For every $k>1$, there is a graphical $2-\left(\binom{2 k-1}{2}, k, \frac{(k-1)(2 k-4)!}{(k-2)!}\right)$ design.

4.2. $m=3$

In this section, we consider the graph $G=G_{3, k}$. We partition the set of all such graphs into classes according to their automorphism groups. The automorphism group of G is S_{k-4} if $d_{j}^{(G)}$ are all distinct (Class I), and $S_{3} \times S_{k-4}$ when $d_{j}^{(G)}$ are all equal (Class II). If exactly two of $d_{j}^{(G)}$ are equal (Class III), then the automorphism group of G is $S_{2} \times S_{k-4}$.

FIGURE 2. Graphs with $m=3$ and $k=6$.

See Fig. 2 for graphs of size 6 from different classes. If we let $G_{3, k}$ be in Class II, then we have the following corollary.

Corollary 4.3. For any $k \geq 4$ divisible by 3 , there is a graphical $2-\left(\binom{2 k-3}{2}, k, \frac{k(2 k-6)!}{3(k-4)!}\right)$ design.

Let's now consider the graphs in Classes I and III, then we have the following result.
Corollary 4.4. For any $k \geq 4$, there are graphical $2-\left(\binom{2 k-3}{2}, k, \frac{2 k(2 k-6)!}{(k-4)!}\right)$ and $2-$ $\left(\binom{2 k-3}{2}, k, \frac{k(2 k-6)!}{(k-4)!}\right)$ designs.

In what follows, we compute the number of nonisomorphic graphs in Classes I and III. There is exactly one graph in Class II if $3 \mid k$, where $k \geq 4$ is the size of the graph.

Consider the equation

$$
\begin{equation*}
\sum d_{j}^{(G)}=k \tag{4}
\end{equation*}
$$

where $k \geq 4$ and $d_{j}^{(G)} \geq 1$. The total number of solutions for (4) is $\binom{k-1}{2}$. Let's now fix k and consider the solutions for (4), where there are exactly two of $d_{j}^{(G)}$ are equal, in the following cases:

Case 1. \mathbf{k} is odd: Without loss of generality, assume that $d_{1}^{(G)}=d_{2}^{(G)}$ and $d_{1}^{(G)} \neq$ $d_{3}^{(G)} \neq d_{2}^{(G)}$. Then,

$$
\left|\left\{d_{3}^{(G)}: \frac{k-d_{3}^{(G)}}{2} \in \mathbb{Z}, 1 \leq d_{3}^{(G)} \leq k-2\right\}\right|=|\{1,3, \ldots, k-2\}|=\left\lceil\frac{k-2}{2}\right\rceil .
$$

This implies that the number of nonisomorphic graphs in Class III is $\left\lceil\frac{k-2}{2}\right\rceil$ if $3 \not x k$ and $\left\lceil\frac{k-2}{2}\right\rceil-1$ if $3 \mid k$.
Case 2. k is even: Similarly, we determine that the number of non-isomorphic graphs in Class III is $\frac{k-2}{2}$ if $3 \nmid k$ and $\frac{k-2}{2}-1$ if $3 \mid k$.

However, the total number of solutions for (4), under the condition that there are exactly two of $d_{j}^{(G)}$ are equal, is three times the number of non-isomorphic graphs in Class III. Note also that there are exactly six corresponding graphs in Class I for a single solution

TABLE I. Number of nonisomorphic graphs $G_{3, k}$ in different classes.

	Class I	Class II	Class III	
$k \geq 4$ odd	$3 \mid k$	$\frac{\binom{k-1}{2}-3\left\lceil\frac{k-2}{2}\right\rceil+2}{6}$	1	$\left\lceil\frac{k-2}{2}\right\rceil-1$
$k \geq 4$ even	$3 \nmid k$	$\frac{(k-1)-3\left\lceil\frac{k-2}{2}\right\rceil}{6}$	0	$\left\lceil\frac{k-2}{2}\right\rceil$
	$3 \mid k$	$\frac{\left.\left({ }^{k-1}\right)^{2}\right)-3 \frac{k-2}{2}+2}{6}$	1	$\frac{k-2}{2}-1$

TABLE II. Some graphical 2-designs with $m=3$ and small $k \geq 4$.

k	n	v	b	r	index λ	Class	\# of graphical 2-designs
4	5	10	60	24	8	III	≥ 1
5	7	21	2,520	600	120	III	≥ 2
6	9	36	181,440	30,240	4,320	I	≥ 1
			30,240	5,040	720	II	≥ 1
			90,720	15,120	2,160	III	≥ 1

for (4). Thus, Table I provides with the number of nonisomorphic graphs in different classes and Table II the parameters for some graphical 2-designs with some small k.

4.3. $m \geq 4$

In this section, we focus on the following two questions:

1. Does there exist an integer-valued polynomial (function) K such that $G_{m, K}$ is 2-edge-balanced for any $m \geq 4$?
2. Does there exist a pair of integer-valued polynomials (functions) K and M such that $G_{M, K}$ is 2-edge-balanced whenever $M \geq 4$?

In this sense, we let $k=K$ in (3):

$$
N=2 K-A-3+\frac{A(2+A)}{2 K+A}
$$

where $A=m^{2}-3 m$. We note that degree of $A(2+A)$ is 4 , then if the degree of K as a polynomial over m is at least 5 , we let $m=1,2,3$ and therefore $N=2 K-A-3 \in \mathbb{Z}$ as we discuss above. In the following, we consider some polynomials K of degree at most 4 with the motivation of finding new families of 2-edge-balanced graphs.

4.3.1. Degree 1

Let $K=a m+b \in \mathbb{Q}[m], a \neq 0$, then consider

$$
N=\frac{4\left(a^{2}-1\right) m^{2}+4(2 a b-3 a+3) m+4\left(b^{2}-3 b\right)}{m^{2}+(2 a-3) m+2 b}+3 .
$$

Thus, we have that

$$
N \in \mathbb{Z} \text { if and only if } 4\left(a^{2}-1\right)=\frac{4(2 a b-3 a+3)}{2 a-3}=2(b-3) \in \mathbb{Z}
$$

for any m. This implies that $a \in\left\{-1,-\frac{1}{2}\right\}$. If $a=-1$, then $K=-m+3<0$ for $m \geq 4$. Moreover, $N=0$ if $a=-\frac{1}{2}$. Hence, there is not a pair of $a \neq 0, b \in \mathbb{Q}$ such that $G_{m, K}$ is 2-edge-balanced for any $m \geq 4$. However, there may still be some values for a, b that result in 2-edge-balanced graphs for certain m values. Among many examples, we provide with some examples of polynomials K that satisfy our conditions. Realize that K is of degree 1 over m and degree 2 over the parameter t.
(i) Let $a=1+t, b=-1-2 t$ and $M_{1}=1+2 t, t \in \mathbb{Z}^{+} \backslash\{1\}$, then we have that

$$
\begin{aligned}
K_{1} & =2 t^{2}+t, \\
N_{1} & =2 t^{2}+2 t-1 \in \mathbb{Z}, \quad \text { and } \\
N_{1}-K_{1} & =t-1 \geq 1
\end{aligned}
$$

(ii) Let $a=1+t, b=-t$ and $M_{2}=2 t, t \in \mathbb{Z}^{+} \backslash\{1\}$, then we have that

$$
\begin{aligned}
K_{2} & =2 t^{2}+t, \\
N_{2} & =2 t^{2}+3 t \in \mathbb{Z}, \quad \text { and } \\
N_{2}-K_{2} & =2 t \geq 1
\end{aligned}
$$

4.3.2. Degree 2

Let $K=a m^{2}+b m+c \in \mathbb{Q}[m], a \neq 0$, then

$$
N=Q+\frac{R_{1} m+R_{0}}{D}+3,
$$

where

$$
\begin{aligned}
& R_{0}=\frac{2(2 a+1) c^{2}-\left(22 a^{2}+12 a b+2 b^{2}+4 a+1\right) c}{8 a^{3}+12 a^{2}+6 a+1}, \text { and } \\
& R_{1}=\frac{-2\left(3(4 a-1) b^{2}+2 a^{3}-15 a^{2}+2 b^{3}+\left(22 a^{2}-14 a+1\right) b-2\left((2 a+1) b+6 a^{2}+3 a\right) c+3 a\right.}{8 a^{3}+12 a^{2}+6 a+1} .
\end{aligned}
$$

Set $R_{0}=0$, then one solution is that $c=0$. Thus, we substitute $c=0$ in $R_{1}=0$. This gives rise to two solutions for b, namely $b=1-a$ and $b=-3 a$. Another solution for $R_{0}=0$ is that $c=\left(22 a^{2}+12 a b+2 b^{2}+4 a+1\right) /(2 a+1)$. This solution implies that $b=-3 a$ or $b=-5 a-1$ in $R_{1}=0$. In the following we discuss some polynomials with coefficients based on these solutions.
(i) $K=a m^{2}+(1-a) m, a \in \mathbb{Z}^{+}$.

Let $m \equiv 2$ or $3(\bmod 2 a+1)$, where $a \in \mathbb{Z}^{+}$, then we write $M_{3}=2+(2 a+1) t$ and $M_{4}=3+(2 a+1) t$, where $t \in \mathbb{Z}^{+}$. Then we compute that

$$
\begin{aligned}
K_{3} & =\left(4 a^{3}+4 a^{2}+a\right) t^{2}+\left(6 a^{2}+5 a+1\right) t+2 a+2, \\
N_{3} & =4\left(2 a^{3}+a^{2}\right) t^{2}+4\left(3 a^{2}+2 a\right) t+4 a+3 \in \mathbb{Z}, \quad \text { and } \\
N_{3}-K_{3} & =\left(4 a^{3}-a\right) t^{2}+\left(6 a^{2}+3 a-1\right) t+2 a+1 \geq 1 .
\end{aligned}
$$

and

$$
\begin{aligned}
K_{4} & =\left(4 a^{3}+4 a^{2}+a\right) t^{2}+\left(10 a^{2}+7 a+1\right) t+6 a+3, \\
N_{4} & =4\left(2 a^{3}+a^{2}\right) t^{2}+4\left(5 a^{2}+2 a\right) t+12 a+3 \in \mathbb{Z}, \quad \text { and } \\
N_{4}-K_{4} & =\left(4 a^{3}-a\right) t^{2}+\left(10 a^{2}+a-1\right) t+6 a \geq 1 .
\end{aligned}
$$

(ii) $K=a m^{2}-3 a m, a \in \mathbb{Z}^{+}$.

Let $m \equiv 1$ or $2(\bmod 2 a+1)$, where $a \in \mathbb{Z}^{+}$, then we write $M_{5}=1+(2 a+1) t$, where $t \in \mathbb{Z}^{+}$except when $a=t=1$, and $M_{6}=2+(2 a+1) t$, where $t \in \mathbb{Z}^{+}$. Then we have that

$$
\begin{aligned}
K_{5} & =\left(4 a^{3}+4 a^{2}+a\right) t^{2}-\left(2 a^{2}+a\right) t-2 a, \\
N_{5} & =4\left(2 a^{3}+a^{2}\right) t^{2}-4 a^{2} t-4 a-1 \in \mathbb{Z}, \quad \text { and } \\
N_{5}-K_{5} & =\left(4 a^{3}-a\right) t^{2}-\left(2 a^{2}-a\right) t-2 a-1 \geq 1 .
\end{aligned}
$$

and

$$
\begin{aligned}
K_{6} & =\left(4 a^{3}+4 a^{2}+a\right) t^{2}+\left(2 a^{2}+a\right) t-2 a, \\
N_{6} & =4\left(2 a^{3}+a^{2}\right) t^{2}+4 a^{2} t-4 a-1 \in \mathbb{Z}, \quad \text { and } \\
N_{6}-K_{6} & =\left(4 a^{3}-a\right) t^{2}+\left(2 a^{2}-a\right) t-2 a-1 \geq 1 .
\end{aligned}
$$

(iii) $K=a m^{2}-3 a m+2 a+1, a \in \mathbb{Z}^{+}$.

Let $m \equiv 0$ or $3(\bmod 2 a+1)$, where $a \in \mathbb{Z}^{+}$, then we write $M_{7}=(2 a+1) t$, where $t \in \mathbb{Z}^{+}$except when $a=t=1$, and $M_{8}=3+(2 a+1) t$, where $t \in \mathbb{Z}^{+}$. Then we compute that

$$
\begin{aligned}
K_{7} & =\left(4 a^{3}+4 a^{2}+a\right) t^{2}-3\left(2 a^{2}+a\right) t+2 a+1, \\
N_{7} & =4\left(2 a^{3}+a^{2}\right) t^{2}-12 a^{2} t+4 a-1 \in \mathbb{Z}, \quad \text { and } \\
N_{7}-K_{7} & =\left(4 a^{3}-a\right) t^{2}-3\left(2 a^{2}-a\right) t+2 a-2 \geq 1 .
\end{aligned}
$$

and

$$
\begin{aligned}
K_{8} & =\left(4 a^{3}+4 a^{2}+a\right) t^{2}+3\left(2 a^{2}+a\right) t+2 a+1, \\
N_{8} & =4\left(2 a^{3}+a^{2}\right) t^{2}+12 a^{2} t+4 a-1 \in \mathbb{Z}, \quad \text { and } \\
N_{8}-K_{8} & =\left(4 a^{3}-a\right) t^{2}+3\left(2 a^{2}-a\right) t+2 a-2 \geq 1 .
\end{aligned}
$$

(iv) $K=a m^{2}-(5 a+1) m+\frac{24 a+3}{2 a+1}, a \in \mathbb{Z} \backslash\{0\}$.

Let's assume one of the following cases for a and m :
(i) $(a, m) \in\{(-5,4),(-5,5),(-2,4),(-2,5),(-1,4),(-1,5),(-1,6)\}$.
(ii) $(a, m) \in\{(1, m) \mid m \geq 6\}$.
(iii) $(a, m) \in\{(4, m) \mid m \geq 5\}$.

It follows that $K \in \mathbb{Z}$ is at least $m+1$ for any $m \geq 4$. However, we are interested in the cases satisfying that $N \in \mathbb{Z}$ is at least $k+1$. If $(a, m)=(-2,5)$, then $N=11$. Let us now assume that $a=1$ and $m \equiv 0$ or $1(\bmod 3)$, where $m \geq 9$. If we write $M_{9}=3 t$ or $M_{10}=1+3 t$, then $t \in \mathbb{Z}^{+} \backslash\{1,2\}$. Then we have that

$$
\begin{aligned}
K_{9} & =9 t^{2}-18 t+9 \\
N_{9} & =12 t^{2}-28 t+15 \in \mathbb{Z}, \quad \text { and } \\
N_{9}-K_{9} & =3 t^{2}-10 t+6 \geq 1
\end{aligned}
$$

and

$$
\begin{aligned}
K_{10} & =9 t^{2}-12 t+4 \\
N_{10} & =12 t^{2}-20 t+7 \in \mathbb{Z}, \quad \text { and } \\
N_{10}-K_{10} & =3 t^{2}-8 t+3 \geq 1
\end{aligned}
$$

Let's consider the case that $(a, m)=(-2,5)$, then we have the following results.
Corollary 4.5. $\quad G_{5,10}$ is 2-edge-balanced.
Corollary 4.6. There exists a graphical $2-\left(55,10, \frac{30 \cdot 8!}{\left|\operatorname{Aut}\left(G_{5,10}\right)\right|}\right)$ design.

4.3.3. Degree 3

Let $K=a m^{3}+b m^{2}+c m+d \in \mathbb{Q}[m], a \neq 0$, then

$$
N=N(m, K)=Q+\frac{R_{2} m^{2}+R_{1} m+R_{0}}{D}+3
$$

where

$$
\begin{aligned}
& R_{0}=\frac{(12 a+2 b+1) d}{4 a^{2}} \\
& R_{1}=\frac{2(12 a+2 b+1) c-24 a^{2}-4 a d-36 a-6 b-3}{8 a^{2}} \text { and } \\
& R_{2}=\frac{4(6 a+1) b+44 a^{2}-4 a c+4 b^{2}+18 a+1}{8 a^{2}}
\end{aligned}
$$

Set $R_{0}=0$, then one solution stems from the equation $12 a+2 b+1=0$. Thus, we substitute $b=(-1-12 a) / 2$ in $R_{1}=0$ and $R_{2}=0$. This implies that $c=11 a+3 / 2$ and $d=-6 a$. Let $M_{11}=2 a t$, where $a, t \in \mathbb{Z}^{+}$except when $(a, t) \in\{(1,1),(1,2)\}$, then we compute that

$$
\begin{aligned}
K_{11} & =8 a^{4} t^{3}-2\left(12 a^{3}+a^{2}\right) t^{2}+\left(22 a^{2}+3 a\right) t-6 a \\
N_{11} & =16 a^{4} t^{3}-8\left(6 a^{3}+a^{2}\right) t^{2}+\left(44 a^{2}+12 a+1\right) t-12 a-3 \in \mathbb{Z}, \quad \text { and } \\
N_{11}-K_{11} & =8 a^{4} t^{3}-6\left(4 a^{3}+a^{2}\right) t^{2}+\left(22 a^{2}+9 a+1\right) t-6 a-3 \geq 1
\end{aligned}
$$

Another solution for $R_{0}=0$ is that $d=0$. Thus, we let $d=0$ in $R_{1}=0$ and $R_{2}=0$ and this results in three sets of solutions where $a \neq 0$:
(i) Let $b=-5 a-1 / 2, c=6 a+3 / 2$, and $M_{12}=1+2 a t$, where $a, t \in \mathbb{Z}^{+}$except when $a=t=1$, then

$$
\begin{aligned}
K_{12} & =8 a^{4} t^{3}-2\left(4 a^{3}+a^{2}\right) t^{2}-\left(2 a^{2}-a\right) t+2 a+1, \\
N_{12} & =16 a^{4} t^{3}-8\left(2 a^{3}+a^{2}\right) t^{2}-\left(4 a^{2}-4 a-1\right) t+4 a+1 \in \mathbb{Z}, \quad \text { and } \\
N_{12}-K_{12} & =8 a^{4} t^{3}-2\left(4 a^{3}+3 a^{2}\right) t^{2}-\left(2 a^{2}-3 a-1\right) t+2 a \geq 1 .
\end{aligned}
$$

(ii) Let $b=-4 a-1 / 2, c=3 a+3 / 2$, and $M_{13}=2+2 a t$, where $a, t \in \mathbb{Z}^{+}$, then

$$
\begin{aligned}
K_{13} & =8 a^{4} t^{3}+2\left(4 a^{3}-a^{2}\right) t^{2}-\left(2 a^{2}+a\right) t-2 a+1, \\
N_{13} & =16 a^{4} t^{3}+8\left(2 a^{3}-a^{2}\right) t^{2}-\left(4 a^{2}+4 a-1\right) t-4 a+1 \in \mathbb{Z}, \quad \text { and } \\
N_{13}-K_{13} & =8 a^{4} t^{3}+2\left(4 a^{3}-3 a^{2}\right) t^{2}-\left(2 a^{2}+3 a-1\right) t-2 a \geq 1 .
\end{aligned}
$$

(iii) Let $b=-3 a-1 / 2, c=2 a+3 / 2$, and $M_{14}=3+2 a t$, where $a, t \in \mathbb{Z}^{+}$, then

$$
\begin{aligned}
K_{14} & =8 a^{4} t^{3}+2\left(12 a^{3}-a^{2}\right) t^{2}+\left(22 a^{2}-3 a\right) t+6 a \\
N_{14} & =16 a^{4} t^{3}+8\left(6 a^{3}-a^{2}\right) t^{2}+\left(44 a^{2}-12 a+1\right) t+12 a-3 \in \mathbb{Z}, \quad \text { and } \\
N_{14}-K_{14} & =8 a^{4} t^{3}+6\left(4 a^{3}-a^{2}\right) t^{2}+\left(22 a^{2}-9 a+1\right) t+6 a-3 \geq 1
\end{aligned}
$$

4.3.4. Degree 4

Let $K=a m^{4}+b m^{3}+c m^{2}+d m+e \in \mathbb{Q}[m], a \neq 0$, then

$$
N=N(m, K)=Q+\frac{R_{3} m^{3}+R_{2} m^{2}+R_{1} m+R_{0}}{D}+3,
$$

where

$$
\begin{array}{rlrl}
R_{0}=-\frac{e}{2 a}, & R_{1} & =-\frac{12 a+2 d-3}{4 a} \\
R_{2}=\frac{22 a-2 c-1}{4 a} & \text { and } & R_{3} & =-\frac{6 a+b}{2 a} .
\end{array}
$$

We set $R_{i}=0$ and this implies that $b=-6 a, c=(-1+22 a) / 2, d=(3-12 a) / 2$, and $e=0$. However, these assumptions do not give rise to a particular set of m values so that our requirements are satisfied. In the following we provide with some examples of monic polynomials K that result in some graphical 2-designs for certain m values. However, we note that in part (i) and (iii) K is of degree 2 over the parameter t although it is of degree 4 over m.
(i) Let $a=1, b=-3-3 t, c=-b, d=e=0$, and $M_{15}=2+3 t, t \in \mathbb{Z}^{+}$, then we have that

$$
\begin{aligned}
K_{15} & =9 t^{2}+12 t+4 \\
N_{15} & =12 t^{2}+20 t+7 \in \mathbb{Z}, \quad \text { and } \\
N_{15}-K_{15} & =3 t^{2}+8 t+3 \geq 1
\end{aligned}
$$

(ii) Let $a=1, b=-3-3 t, c=-b, d=e=0$, and $M_{16}=1+4 t, t \in \mathbb{Z}^{+}$, then we compute that

$$
\begin{aligned}
K_{16} & =64 t^{4}-32 t^{3}-12 t^{2}+4 t+1 \\
N_{16} & =128 t^{4}-64 t^{3}-40 t^{2}+12 t+3 \in \mathbb{Z}, \quad \text { and } \\
N_{16}-K_{16} & =64 t^{4}-32 t^{3}-28 t^{2}+8 t+2 \geq 1
\end{aligned}
$$

(iii) Let $a=1, b=-4-3 t, c=-b, d=e=0$, and $M_{17}=3+3 t, t \in \mathbb{Z}^{+}$, then

$$
\begin{aligned}
K_{17} & =9 t^{2}+18 t+9 \\
N_{17} & =12 t^{2}+28 t+15 \in \mathbb{Z}, \quad \text { and } \\
N_{17}-K_{17} & =3 t^{2}+10 t+6 \geq 1
\end{aligned}
$$

Let K_{i} and $M_{i}, i \in\{1, \ldots, 17\}$, be as above. If $i \in\{1,2,9,10,15,16,17\}$ and $t \in \mathbb{Z}^{+}$ except when $t=1$ for $i \in\{1,2,9,10\}$ and $t=2$ for $i \in\{9,10\}$, then we have that

Corollary 4.7. $\quad G_{M_{i}(t), K_{i}(t)}$ is 2-edge-balanced.

Corollary 4.8. There are infinite families of graphical 2-designs.
If $i \in\{3,4,5,6,7,8,11,12,13,14\}$ and $a, t \in \mathbb{Z}^{+}$except when $a=t=1$ for $i \in$ $\{5,8,12\}$, then we have that

Corollary 4.9. $\quad G_{M_{i}(a, t), K_{i}(a, t)}$ is 2-edge-balanced.

Corollary 4.10. There are infinite families of polynomials each of which results in infinite families of graphical 2-designs.

5. FURTHER RESULTS ON 2-EDGE-BALANCED GRAPHS

Let G be a graph of order n and size k. Then, $n_{H_{1}^{(2)}: G}+n_{H_{2}^{(2)}: G}=\binom{k}{2}$, from which it follows that

$$
\frac{n_{H_{2}^{(2)}: G}}{n_{H_{1}^{(2)}: G}}=\frac{\binom{k}{2}-n_{H_{1}^{(2)}: G}}{n_{H_{1}^{(2)}: G}}
$$

TABLE III. Some $\boldsymbol{m}, \boldsymbol{k}$ values resulting in 2-edge-balanced graphs $\boldsymbol{G}_{m, k}$.
$m \quad k \leq 10000$
410
$5 \quad 10,15,25,55$
$6 \quad 21,27,36,51,81,171$
$7 \quad 21,28,46,56,70,91,126,196,406$
$8 \quad 36,40,50,64,85,100,120,148,190,260,400,820$
$9 \quad 36,45,57,81,99,141,162,189,225,351,477,729,1485$
$1049,55,70,85,91,105,133,145,175,217,245,280,325,385,469,595,805,1225$, 2485
$1155,66,76,88,121,136,154,176,220,286,316,352,396,451,616,748,946,1276$, 1936, 3916
$1278,81,111,126,144,166,216,243,276,342,441,486,540,606,936,1134,1431$, 1926, 2916, 5886
$1378,91,100,130,155,195,221,265,325,364,507,595,650,715,793,1365,1651$, 2080, 2795, 4225, 8515
$14105,154,196,209,231,287,352,385,469,495,781,847,924,1015,1639,1925$, 2926, 3927, 5929
$15105,120,144,162,170,183,225,274,300,330,365,378,456,495,540,690,729$, $820,1002,1080,1170,1275,1548,1730,2250,2640,3186,4005,5370,8100$

For G to be 2-edge-balanced, we require

$$
n=\frac{\left.4\binom{k}{2}-n_{H_{1}^{(2)}: G}\right)}{n_{H_{1}^{(2)}: G}}+3
$$

to be an integer. Hence, $n_{H_{1}^{(2)}: G}$ must divide $2 k(k-1)$. Based on this condition, we present some 2-edge-balanced graphs G in Table IV in which we adopt the following notation:

Graph-theoretic:

E_{n}-empty graph (graph of order n with no edges).
P_{n}-path of length n.
C_{n}-cycle of length n.

Group-theoretic:

D_{n}-dihedral group of order $2 n$.

6. CONCLUSION

In this article, we show the existence of new infinite families of 2-edge-balanced graphs. Table III lists all $m, k(4 \leq m \leq 15, m<k \leq 10,000)$ values such that $G_{m, k}$ is

G	$n_{H_{1}^{(2)}: G}$	n, k	Aut(G)	index λ
$P_{2} \cup(k-2) P_{1} \cup E_{2 k(k-2)}$	1	$2 k(k-1)-1, k \geq 2$	$\left(S_{2}\right)^{k-1} \times S_{k-2} \times S_{2 k(k-2)}$	$\frac{2^{(2-k)}\left(2 k^{2}-2 k-4\right)!}{(k-2)!\left(2 k^{2}-4 k\right)!}$
$2 P_{2} \cup(k-4) P_{1} \cup E_{k^{2}-3 k+1}$	2	$k(k-1)-1, k \geq 3$	$\left(S_{2}\right)^{k-1} \times S_{k-4} \times S_{k^{2}-3 k+1}$	$\frac{2^{(3-k)}\left(k^{2}-k-4\right)!}{(k-4)!\left(k^{2}-3 k+1\right)!}$
$P_{3} \cup(k-3) P_{1} \cup E_{k^{2}-3 k+1}$	2	$k(k-1)-1, k \geq 3$	$\left(S_{2}\right)^{k-2} \times S_{k-3} \times S_{k^{2}-3 k+1}$	$\frac{2^{(4-k)}\left(k^{2}-k-4\right)!}{(k-3)!\left(k^{2}-3 k+1\right)!}$
$C_{4} \cup(k-4) P_{1} \cup E_{(k-2)(k-3) / 2}$	4	$k(k-1) / 2-1, k \geq 4$	$D_{4} \times\left(S_{2}\right)^{k-4} \times S_{k-4} \times S_{(k-2)(k-3) / 2}$	$\frac{2^{(4-k)}\left(1 / 2 k^{2}-1 / 2 k-4\right)!}{(k-4)!\left(1 / 2 k^{2}-5 / 2 k+3\right)!}$
$P_{5} \cup(k-4) P_{1} \cup E_{\left(k^{2}-5 k+2\right) / 2}$	4	$k(k-1) / 2-1, k \geq 5$	$\left(S_{2}\right)^{k-3} \times S_{k-4} \times S_{\left(k^{2}-5 k+2\right) / 2}$	$\frac{2^{(6-k)}\left(1 / 2 k^{2}-1 / 2 k-4\right)!}{(k-4)!\left(1 / 2 k^{2}-5 / 2 k+1\right)!}$
$P_{k} \cup E_{k-2}$	$k-1$	$2 k-1, k \geq 2$	$S_{2} \times S_{k-2}$	$\frac{(k-1)(2 k-4)!}{(k-2)!}$

2-edge-balanced. A natural question is whether the Alltop's method [1] could be developed to obtain t-edge-balanced graphs $(t \geq 3)$ and produce new infinite families of t-edge-balanced graphs.

REFERENCES

[1] W. O. Alltop, On the construction of block designs, J Combin Theory 1 (1966), 501-502.
[2] A. Betten, M. Klin, R. Laue, and A. Wassermann, Graphical t-designs via polynomial KramerMesner matrices, Discrete Math 197/198 (1999), 83-109.
[3] B. Bollobas, Modern Graph Theory, vol. 184 of Graduate Texts in Mathematics, SpringerVerlag, New York, 1998.
[4] Y. M. Chee and P. Kaski, An enumeration of graphical designs, J Combin Des 16 (2008), 70-85.
[5] Y. M. Chee and D. L. Kreher, "Graphical designs," in The CRC Handbook of Combinatorial Designs, C. J. Colbourn, J. H. Dinitz (Editors), 2nd ed., CRC Press, Boca Raton, 2007, pp. 490-493.

[^0]: Contract grant sponsor: National Research Foundation of Singapore; contract grant number: NRF-CRP2-2007-03; contract grant sponsor: Nanyang Technological University; contract grant number: M58110040.

